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Nonlinear effects in edge waves 
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Nonlinear corrections to Stokes’s linear edge-wave solution are obtained by 
means of perturbation expansions in the amplitude. The shallow-water formu- 
lation is considered first, but even for small beach angles ,8 the behaviour in the 
deep water offshore becomes important and this formulation is limited. In  the 
full formulation, amplitude dependence is required in the dispersion relation and 
in the exponents for the exponential decay away from the shore. There is anon- 
uniformity in the results as ,8+ $n-, which is corrected by a special perturbation 
expansion. 

1. Introduction 
Stokes (1846) hs t  noted a solution of the linear water-wave equations that 

represents edge waves on a sloping beach. These are waves propagating along the 
beach with their crests perpendicular to the shoreline and with amplitude decay- 
ing exponentially out to sea. Stokes’s solution for the velocity potential # and 
wave height 5 may be written 

q5 = agw-l sin ,8 exp ( - ky cos ,8 + kx sin p) sin (kx - ot), 

5 = a sin ,8 exp ( - ky cos ,8) cos (kx - wt) ,  

(1) 

(2) 

where x is along the beach, y is out to sea and x is vertical, ,8 is the angle of the 
beach (assumed constant), a is the amplitude of the run-up, and k and w are the 
wavenumber and frequency. The dispersion relation between w and k is 

w2 = gksinp. (3) 

Munk, Snodgrass & Carrier (1956) have shown from wave records that edge 
waves are an important component in the disturbances produced by storms 
moving along coastlines. They also discuss their generation by diffraction and 
scattering of incoming wave trains (in particular tsunamis) on irregular and 
curved coastlines. Apart from such cases where the source provides a component 
along the beach directly, edge waves may be generated from normally incident 
waves by instability mechanisms and then play a role in the production of rip 
currents, scouring of beaches etc. (See Guza & Davis (1974) and references given 
there.) 

In  the further development of the theory, Ursell(l952) showed that Stokes’s 
solution is only one of the possible edge-wave modes and that successively more 
arise as ,8 decreases. A second one is possible for ,8 < in-, a third for ,8 < A n  

23 F L M  74 



354 G. B. Whitham 

and so on. The nth mode appears as p drops below n/2(2n + 1) and its dispersion 
relation is 

There is also a continuous spectrum of solutions with w2 > gk to complete the 
representation of general disturbances. Even in the linear theory, solutions for 
the continuous spectrum become extremely complicated for arbitrary ,8. (See 
Stoker 1957, chap. 5.) They simplify for the specialangles @ = 7r/2N, N = integer 
(Hanson 1926), but become more complex again as N increases. The case p = an 
will be useful here and is discussed in detail in 9 5. 

When /3 < 1, it  is natural to  turn to shallow-water theory. In  the linearized 
version of that theory for a uniformly sloping beach, the surface elevation 
[(x, y, t )  satisfies 

The edge-wave solutions are found from 

w2 = gksin(2n+ 1)p.  (4) 

9PY(Y,, + [,,I + gpfl, - Qt = 0. ( 5) 

< = @f(y) cos (kx - ~ t ) ,  
yf" +f' + (w"gp - k2y)f = 0. 

The equation for f(y)  is a slight modification of Laguerre's equation and solu- 
tions bounded at  both y = 0 and y = co are required. This is a well-known eigen- 
value problem with solutions 

f ( Y )  = e-k"L,(2kY), (8) 

(9) 

(10) 

The eigenfunctions (8) form a complete set and there is no longer a continuous 
spectrum.? The lowest mode, n = 0, is just 

w2 = (2n + 1) pgk, 

I., (5) = ec (d/ dE)n (En e"). 

where Ln($) is the nth Laguerre polynomial: 

f (y) = e-ky,  w2 = gpk, (11) 

which agrees with Stokes's result for p 1. For the higher modes the dispersion 
relation (9) is the limiting form of Ursell's relation (4). The solutions (8) agree with 
Ursell's solutions near the shore but there is a discrepancy as y - + o ~ .  I n  (8) the 
asymptotic behaviour is like yne-kv; in Ursell's solutions the decay is pure ex- 
ponential with slightly modified exponents. This discrepancy is associated with 
the failure of the shallow-water approximation in the deep water at infinity. 
The difference is usually unimportant in linear theory since it arises where the 
disturbance is negligibly small. However, the behaviour at infinity becomes a 
sensitive issue in the nonlinear theory, and the differences between shallow-water 
theory and the full theory become important. 

The purpose of this paper is to discuss nonlinear effects for travelling edge 
waves, with emphasis on the nonlinear modifications to the Stokes solution 
(1)-(3) and its shallow-water counterpart (6) and (11). The first question is 

We are concerned here with the case k + 0. For k = 0, edge waves do not arise of 
course, and there is a continuous spectrum with solutions involving Bessel functions. 
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whether solutions representing waves of permanent form exist; the waves could 
conceivably distort and tend towards breaking under the nonlinear effects, or 
perhaps swing round towards the shore. The perturbation expansions developed 
here indicate that waves of permanent form do exist. The appropriate modifica- 
tions to the linear results for the lowest mode are then found. It appears that 
similar procedures would go through for the higher modes. 

The mathematical problem is beset by a surprising number of non-uniformities. 
First, amplitude dependence in the dispersion relation is required to avoid 
secular terms in 5 or t. Fortunately this is familiar in such periodic problems 
and in fact is the main object of the analysis. Then non-uniformities in the 
solutions as y-too become of importance, as noted earlier. These in turn cast 
doubt on the use of the shallow-water approximation for b-t 0, since it is invalid 
at infinity. The full theory shows that the dispersion relation is given correctly but 
the y dependence is incorrect. This is analogous to the discrepancy between the 
linear versions of the two theories, but in severer form since behaviour at  infinity 
enters the arguments directly. Finally, in the full theory there is a non-uniform 
limit as j3-+Qn. For a vertical wall ,8 = &, the results should reduce to the 
known one-dimensional results for deep water (also due to Stokes). They did 
not. This was a major obstacle. Although the singular behaviour is in a range 
which is not of much direct interest for edge waves, i t  left uneasiness about the 
validity of the other results. A special perturbation solution for p near $n has 
finally resolved this issue and now all non-uniformities are accounted for. 

2. Shallow-water theory 

are most easily developed in this simpler formulation. 

form 

We start with the shallow-water theory, since the main steps in the analysis 

For a uniformly sloping beach, the nonlinear equations may be written in the 

(12) 

@,+pD:+p;+gg= 0, (13) 

Q + ((by + C) @& + {(PY + C) @,I, = 0, 

where @(z, y, t )  is a velocity potential for the horizontal velocity components. 
For solutions representing travelling edge waves of constant shape, 6 and @ 
are functions of 0 = k x - o t  and y. To improve on linear theory, 6 and @ are 
expanded in powers of the run-up amplitude a. We take 

5 = a / 3 { ~ ~ ) ( 0 ,  y) + hQ2)(0, y) + k2a2[(3)(0, y) + . . .}, 
0 = cGgaw-l{<p(l)(O, y) + kaW2)(8, y) + k2a2W3)(0, y) + . . .}. 

(14) 

(15) 

As is usual in this type of problem, the possibility of secular terms arises at  
third order, and a simultaneous expansion of o in powers of a is used to suppress 
them. We take 

(16) 

a term proportional to a is not required, since there is no trouble in the second 
approximation. 

w2 = w @ +  yk2a2 + . . .}; 

23-2 
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The first-order problem leads to the equation 

for c"), and W) is determined from @Q" = Q1). We choose 

6') = f(y) cos 6,  W) = f(y) sin 8, (18) 

in agreement with (6). Thenf(y) is one of the eigenfunctions (8) and wo is deter- 
mined by the corresponding eigenvalue relation (9). 

At each successive order an equation for Qm) is obtained which is the same 
as (17) except for inhomogeneous terms on the right involving lower-order 
quantities. At second order, terms P(y) + &(y) cos 28 appear on the right, and the 
equation may be solved taking a similar form for c(2). At third order we have 

The term in COB 36 gives no trouble and is accommodated by a corresponding 
term proportional to cos38 in c(3). But the term in cos6 would 'resonate' in 
general, since the solution f(y) cost' chosen for Q1) is a solution of the homo- 
geneous equation. A secular term proportional to 8 sin 6 would then be required 
in c(3). However, R ( y )  includes a term in y which arises from the expansion (16) 
and has not been determined up to this point. It may be chosen so that reso- 
nance does not occur and the appropriate term in c@) is still f3) (y)cos 6. If this 
is to be the case, we see from (19) thatfc3) must satisfy 

yfh$+ff)+ (@j/g/3-k2y)f(3) = R(y). (20) 

Now (20) does not have a solution bounded at  both y = 0 and y = co for general 
R(y). This is because the functionf(y) in the choice of (0) is an eigenfmction of 
the left-hand side with oi/g/3 equal to the corresponding eigenvalue. There is a 
bounded solution to (20) only when R(y) satisfies the orthogonality condition 

The condition may be seen on multiplying (20) by f(y)  and integrating by parts 
to give 

p Y )  my)  dY = rY(ff$'-fP)lo". 

If f(3) is bounded at y = 0 and y = 03, the integrated parts tend to  zero (since 
f+ 0 exponentially as y -+ co) and the orthogonality relation follows. 

In  simpler problems of this general type, there would be no y dependence in 
an equation such as (19) and the cos 8 term would be eliminated completely by 
the choice of y. Here this term is not eliminated completely, but the orthogonality 
condition is satisfied by the choice of y, and a bounded solution for f@) can be 
found; there is then no need for secular terms in c(3). 

The details of the solution are now given for the lowest (Stokes) mode 

f (y) = e-ky, w$/g,% = Ic. (22) 
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This is particularly simple, since the COB 28 and cos 36 terms in g(2) and [(3) are 
absent (by chance) and = 0. We find 

6 2 )  = - 4 e--2ky, @(2) = 0. (23) 

Then 6‘3) = y ) cos 6, @(3) = f 3 ) (  y )  sin 6, (24) 

yf;: +fh3)+ ( k -  k2y) f (3)  = - ~ k e - ~ U +  l ~ e - ~ ~ u .  (25 )  

where the equation for f(3) is 

The right-hand side must be orthogonal to e-ku; hence y = 4. 
This can also be verified directly in the course of solving (25) to findfc3). Since 

e-kg is a solution of the homogeneous equation, (25) may be solved via the sub- 
stitution f(3) = e-kuw(y). The equation for w integrates to 

For f(3) to be bounded at co, C must be zero; for f 3 )  to be bounded at y = 0, y 
must be +. Then 

The complete solution to third order is 

1 u 1-e-2kq 
f (3) = e-kuw, w = z J o  71 (26) 

= / 3 a ( e - k ~ ~ o s 6 - ~ k a e - ~ k ~ +  k2a2e-kYw(y) cos6+ ...}, (27) 

@ = g@w-l{e-kY sin 8 + k2a2e-kuw(y) sin 6 + . . .), (28) 

w2 = gk/3(l++k2a2+ ...), (29) 

the most important result being the nonlinear modification of the dispersion 
relation in (29). 

However, we now come to the non-uniformity as y + 00. Alth~ughf(~)is bounded 
and in fact tends to zero as y + m ,  it  becomes large compared with e-ku, since 

w ( y )  - t%Y,  y + m .  (30) 

Therefore the third-order terms in (27) and (28) become large compared with the 
first terms and the expansions in ka are not uniformly valid as y - t m .  When 
this occurs in a perturbation expansion it is normally viewed as an inadvertent 
use of a Taylor series which should be reversed. That is, the first and third terms 
in (27) should be combined into 

exp [ - k y  + k2a2w(y)] cos 8; (31) 

we have found the Taylor expansion 

e - h { l +  k2a2w(y)+  ...} cos6. 

Since w / y  remains bounded for all y (and in fact tends to zero as y-+co), (31) 
would be proposed as the uniformly valid form. 

The analysis can be recast to incorporate (31). This leads naturally to a re- 
vised view of the expansions for 5 and @, in which the terms are regrouped 
according to Fourier expansions. That is, we take 

{ = /3a{kaf,,(y, a)  + f l ( y ,  a)  cos 6 + kaf2(y ,  a)  cos 26 + k2a2f,(y, a)  cos 36 + . . .}, (32) 

(33) @ = g/3aw-l{g1(y, a)  sin 6 + kag2(y, a)  sin 26 + k2a2g3(y, a)  sin 36 + . . .). 
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The powers of ka indicate the main orders of the terms, but further amplitude 
dependence remains in the coefficients. If the coefficients have Taylor expansions 
in ka, then after re-arrangement the previous version is recovered. However, 
the Fourier-series form has the greater flexibility required to incorporate (31). 
The details are not pursued in this case because the shallow-water approximation 
is now suspect. The behaviour at infinity becomes a crucial part of the discussion, 
and is also involved in deriving the dispersion relation (29) (from the condition 
that f(3) be bounded at 00). Since the shallow-water assumptions break down in 
the deep water a t  infinity it is not clear even that (29) is correct. Certainly (31) 
has an awkward form when (26) is used for w(y). We also note that w(y) N $logy 
so the y dependence is like 

y&k2a2 e-ky as y + co. 
This is reminiscent of the comparison made following ( 11) of the linear results. 
The conclusion is that (31) is not the true behaviour in the real problem. Accord- 
ingly the full formulation is taken up. It is found that the dispersion relation (29) 
is correct for /3+ 0, but the behaviour in (31) should again be pure exponential in 
y, with an exponent depending on ka. 

A. Minzoni has suggested that the shallow-water results could be clarified by 
considering a more general depth distribution h,(y) which starts like By but 
remains finite and shallow as y+co. His investigation appears in t,he adjacent 
paper. He finds results similar to those of the full theory. The case h, = By is 
indeed anomalous in shallow-water theory. 

3. Fourier series expansions for the full water wave theory 
In  the full theory, the problem is formulated in terms of a velocity potential 

$(x, y, z, t )  which satisfies Laplace’s equation in the wedge-shaped region bounded 
by z = 0 and y sin /3 + z cos /3 = 0. The normal derivative 

on the sloping side, and there are nonlinear boundary conditions relating q5 and 
the wave height ((x, y, t )  on z = 0. 

In  view of the various non-uniformities we take the Fourier-series view from 
the start. The amplitude expansions can be recovered as described at  the end 
of the last section. The Fourier expansions are 

$,sinP+$zcos/3 = 0 (34) 

4 = agw-1sin/3(F(y,z,a)sin6+kaF2(y,z,a)sin28 

( = a sin /3(kaG,(y, a)  + G(y, a )  cos 8 + kaG,(y, a)  cos 28 
+ k2a2P3(y, z, a) sin 30 + . . .}, 

+ k2a2G3( y, a)  cos 38 + . . .}, 

(35) 

(36) 
where 8 = k x - o t ,  and w ( k , a )  is not expanded at  this stage. For Stokes’s edge 
wave the boundary-value problem for F correct to third order is 

Fu,+Fzz-k2F = 0, -ytanp < z < 0, (37) 
.F, - (w2/g) F = - k3a2 sin/3F3, (38) 
Fusin/3+Ecos/3 = 0, z = -ytanp. (39) 

z = 0, 

The derivation will be explained after noting the linear solution. 
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In  the linearized theory the right-hand side of (38) is neglected and Stokes’s 
edge wave 

F = exp ( -Icy cosp + kzsinp), 

w2/g = k sin ,!? 

G = F(y ,  0 )  = exp ( -Icy cosp). 

(40) 

(41) 

(42) 

is a solution. The corresponding expression for G is 

The nonlinear problem is obtained by substituting (35) and (36) into the 
governing equat’ions. Laplace’s equation gives (37) for F and 

FmUU + FnBz - n2k2Fn = 0 

for each F,. All the F’s satisfy (39)’ since the bottom condition (34) is linear and 
does not involve 8 derivatives. The nonlinear boundary conditions on the top 
surface z = 0 are complicated. After substitution of (35) and (36)’ the various 
products are re-expressed as Fourier series, keeping terms that contribute up to 
third order. The coefficients of the combined Fourier series are then set indivi- 
dually to zero. Now it is anticipated that the corrections to the linear relations 
are of order a2. So we use the relations 

FU = -kcos/3F+O(a2), F, = ksin,4P+O(a2), (43) 

G = F+O(a2), w2 = gksinP+O(a2) (44) 

in any second- and third-order quantities. For example, the terms independent 
of 8 in one of the boundary conditions give 

1 1 gsinp 
G - -sinp&G--- (k2F2+Fi+FE).  

O - 2k 4 W 2 k  
(45) 

From (43) and (44) we have 

Go = - 4 cos2/3P2 + O(a2), (46) 

which is sufficient for third-order accuracy in (36). Similarly it is found from the 
terms in cos 28 and sin 28 that 

G,  = *sin2/3F2, F, = 0 (47) 

to this order. Third-order products contribute to both the first and third har- 
monics, since, for example, cos3 8 and cos 8 cos 28 may be re-expressed as com- 
binations of cos8 and cos38. When (46) and (47), as well as (43) and (44), are 
used in their coefficients, we obtain 

I G3 = #sin4PF3, F3 = 0, 
G = F-k2a2($sin2p-$sin4p)F3 

and the boundary condition (38). 
A detailed derivation is given in the appendix. 
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4. The boundary-value problem for P 

amplitude expansions to correct the Stokes solution, i.e. 
The first approach to the boundary-value problem (37)-(39) is to use small 

F = exp ( - ky cosj3+ kz sinj3) + k2u2F3)(y, x )  + . . . , (49) 

d / g  = ksinp(l+yk2u2+ ...). (50) 

Then Fh:+Fit)-k2F(3) = 0, -ytanj3 < z < 0, (51) 

P ~ ) ~ i n B + F ~ ~ ) c o s / 3  = 0, z = -ytanp. (53) 

Pk3) - k sin /3P(3) = k sin /3{y exp ( - ky cos j3) - exp ( - 3ky cos p)}, x = 0, (52) 

This is exactly the problem that would have been obtained for the resonant 
term in the more straightforward amplitude expansions for q5 and 5. It is the 
analogue of (25). There is again no bounded solution for the inhomogeneous 
problem in general since 

$ = exp(-kycosP+kzsinP) 

is an eigensolution of the homogeneous problem. But an orthogonality condition 
analogous to that for (25) can be found and when this is satisfied there is a 
bounded solution for P(3). The condition can be obtained by applying Green’s 
theorem to  $ and F(3) over the wedge-shaped region. We have 

0 = Jj,-($V2P‘”-P(3)V2$) dydz 

= low exp ( - ky cos j3) [Pk3) - k sin pP(3)],,,dy. (54) 

Without the extra term containing y in (52), the condition could not be satisfied 
and there would be no solution for P(3). When it is included, we have a simple 
determination of y ;  it must be Q. This confirms the result (29) of shallow-water 
theory in the limit as /3+0. 

At first this seemed a neat end to the investigation and it was hoped that this 
time there would be no trouble at infinity. But it was soon noted that, in the 
limit /3+&r, the nonlinear correction in (50) with y = Q does not reduce to 
Stokes’s result for a one-dimensional wave in deep water. (A vertical wall 
parallel to the direction of propagation has no effect in inviscid theory.) In that 
case y = l! Indeed for p = in and y dependence absent, the solution of (51)-(53) 
is clearly just 

in agreement with Stokes. 
Now the question of non-uniformity as y-+m becomes an issue again. So far 

F(3) has not been determined. Does it, in fact, have highly unacceptable properties 
which invalidate the whole discussion ? 

This was first resolved by finding F(3) in detail for the special case j3 = in. 
But the consequences can be put in general form. For large y, we argue that the 

P(3) = @, y = 1, 



Nonlinear effects in edge waves 361 

term exp ( - 3ky cos/3) in (52) is negligible (provided /3 is not close to in!) and 
that the waves no longer feel the bottom so (53) can be ignored. Then a solution 
of (51) and the approximate form of (52) with y = 4 is 

P3) N (@ysin2/3/cos/3++kzsin/3)exp (-kycosp+kzsin/3). (55) 

When this is substituted back in (49) we have again non-uniform behaviour at 
infinity. However, this time, reversing the Taylor expansion, the proposed 
uniformly valid form is 

F - exp(-kAy+kBz), (56) 

where A = cos /3 - +k2a2 sin2/3/cos /3 + . . . , 
B = sin/3+@2a2sin/3+ ... . 

(57) 

(58) 

This seems perfectly reasonable; we just have amplitude dependence in the 
exponents. The frequency w already had to depend on a;  it seems natural that 
other parameters should also. 

However, non-uniformity as /3+ $r also appears. Clearly the correction term 
in (57) is not valid in this limit, and we know in any case that (50) is not valid 
with y = i. The conclusion is that amplitude dependence of w ,  A and B is 
correct but the corrections can not be obtained by simple expansions in a for 
$ close to in. 

The validity of (56)-(58) for /3 well away frdm &r will be discussed in 3 6 and 
the behaviour as /3++n will be obtained in $7. First we justify the result (55) 
and the arguments leading to it for /3 = in. 

5. Special case /3 = in 
The solution of the boundary-value problem (51)-(53) is now explored in full 

for the case /3 = in. We shall need the solution of the homogeneous eigenvalue 
problem 

$vy+$Zz-k2$ = 0, -y < z < 0, (59) 

$z-h$ = 0, z = 0, (60) 

$v+$z= 0, z = -y. (61) 

The edge wave $0 = exp ( - h,Y +h,& A, = k/& (62) 

$, = g(Z+ih)exp(iZy+hz)+~(Z+ih)exp( -hy-iZz)+c.c., (63) 

h = (b2+k2)* with 0 < I < co, (64) 

is one solution. The solution in the continuous spectrum may be written as 

where C.C. denotes ‘complex conjugate’. The first term in (63) is the usual ob- 
lique wave for infinite depth; i t  satisfies the condition on z = 0 but not that on 
z = -y. The second term compensates in order to satisfy the condition on 
z = - y; it falls off as y+co. (Notice that this term must be combined with its 
complex conjugate to satisfy the condition on z = 0.) 

The solution (63)-(64) was found by Hanson (1926), presumably by trying 
exponential solutions and choosing parameters appropriately. It can also be 



362 G. B. Whitham 

derived by an extension of a method used by Stoker (1957, chap. 5 )  for beach 
angles which are fractions of in. 

In the inhomogeneous problem for F3), (60) is replaced by 

Fi3)-hoF(3) = Ao(ye--hov-ee-3&V ), 2 = 0. (65)  

(It is convenient to use A, to avoid writing k id2  everywhere.) The solution for 
F(3) is found as a superposition of the eigensolutions of the homogeneous problem. 
We take 

P("(Y, 4 = lib@'o(Y, 4 +lom 4 @ Z ( Y , Z , )  dl. (66)  

This satisfies ( 5 1 )  and (53 )  immediately and the coefficients Po and 4 are to be 
determined from (65). We shall need the expansion of the right-hand side in the 
reduced eigenfunctions 

(67) 

(68)  

These are orthogonal and any square-integrable functionf(y) can be expanded as 

yO(y) $0(y7 O )  = e-Aov> 

Yl(y) = @z(y,O) = ~ ( l + i A ) e i ' ~ + ~ ( l + i h ) e - A * + c . c .  

where 

Forf(y) = ho(ye-Aov-e-3Aou), we have 

When ( 6 6 )  is substituted in (65 ) ,  the term Yo drops out on the left so it must be 
absent on the right. This is another derivation of the orthogonality condition, 
namely fo = 0, and the requirement y = is recovered. From the continuous 
range, we find 

When 4 and @l are substituted in ( 6 6 ) ,  the complex-conjugate part can be con- 
verted into an integral over negative I and the final solution written as 

F1= filch - AO). 

In  the upper half-plane there is a double pole at  1 = ih,(h = ho), a single pole at 
1 = 3ih, and a branch point at  1 = i k ( h  = 0 ) .  If the plane is cut from 1 = ilc to 
ioo and %? is a loop contour around the cut, the path of integration for the eizfb 
term in ( 7 3 )  can be deformed around the pole I = ih, into V, to give 

P@) = @,(y + z )  e--hoy+Aoz+ H ,  (74)  
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The two integrals can be transformed and combined in various interesting ways, 
but all we need note here is that they are both O(e-kg), whereas the first term in 
(74) is O(e-W/42). The first term is exactly ( 5 5 )  for the case /3 = in. It satisfies 

the part Fi3’-h0F(3 = &Ioe-hov, z = 0, 

of (65) and Laplace’s equation, but not the bottom condition. The function H 
balances the remaining term in (65) and ensures satisfaction of the boundary 
condition at  the bottom. 

Thus the arguments leading to (55)  are justified in all details for the special 
case /3 = in. It seems clear that they hold in general provided /3 is not too close 
to &T. 

6. Revised solution of the boundary-value problem 
The solution proposed in (56) is a modification of the linear solution to allow 

the exponents as well as w to depend upon a. To assess this directly in (37)-(39) 
we consider the expansions 

P = e--kAY+kBz + k2a2H + . . ., 
w2/g = ksinp(1 +yk2a2+ ...), 

(76) 

(77) 

(78) 

Az+Bz = 1, i.e. Azcos2/3+B,sin2/3 = 0, (79) 

H,,+Hz,-k2H = 0, -ytan/3 < z < 0, (80) 

(81) 

H,sinp+H,cosp = ksin/3cos/3(A,-B2)e-kr, 2 = -ytan/3; (82) 

A = cos/3(l +Azk%2+ ...), B = sin/3(1+ B,k2as+ ...). 

The first term in P must satisfy (37), so that 

and the boundary-value problem for H becomes 

H, - k sin /3 H = k sin P{(y - B,) e-kA, - e-3kAv}, z = 0, 

in the last term, r is the radial distance (y2+z2)+. It should be noted that the 
relations (43) and (44) used to express the higher-order terms in F still hold to 
the order shown. 

Now the previous arguments can be applied to the revised problem. First, 
from (81) we choose 

to  avoid a term of the form 
Y = B, (83) 

(py + qz) e--kAu+kBz, 

which would lead to a non-uniform expansion in (76). Then we derive the re- 
vised orthogonality condition. It has an extra term since aH/an is no longer 
zero on the bottom. It reads 

[H, - k sin /3€I],, e-kvcosg dy - [H, sin /3 + H, cos /3], = - , tan e-kr dr = 0. 

(84) 
This gives A,-B, = -asec2P ( 8 5 )  

in the lowest-order approximation. 
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The coefficients y, A ,  and B, are determined from (79), (83) and (86) and we 
have 

I$= gksin/3(1++k2a2+...), (86) 

A = cos~-gkzazsinzPIcosP+ ..., (87) 

B = sinp+@2a2sin/3+ ... . (88) 

With these conditions satisfied, it  is assumed that there is a satisfactory solu- 
tion for H (when /3 + in) and the second term in (76) is uniformly small. This 
can be checked for the case /3 = an. In  fact, if the linear value A = l /d2  is 
taken in the exponent in (81) the solution is just (75). Otherwise some care is 
needed (in particular the orthogonality relation must be satisfied more accurately 
than in (85)) but the modifications are inconsequential and do not affect (86)-(88) 
to the order shown. 

The important results are the first term in (76) and the expressions for the 
parameters in (86)-( 88). These agree with (56)-( 58) and provide formal justi- 
fication. The nonlinear effects reduce the exponential decay with y and introduce 
amplitude dependence into the dispersion relation. The non-uniformity as 
p+&r is apparent in both the results and the derivation. In  a small range 
4n-p = O(ka) near to in, the two terms in (87) are of equal order. In  fact if 
the formula still held, A would reach zero at a value in this range before p 
reached in. This indicates that the simple exponential decay -ceases before /3 
reaches Jn. Similarly B is increased over its linear value and reaches unity before 
/3 = in; from (79), B can not exceed unity. In  the derivation it is clear that as 
A + 0 the terms on the right of (81) become equally important and the argument 
used to determine y is invalid when this occurs. The exact solution of (37)-(39) 
for f i  = Jn is 

so we do have A = 0, B = 1 and a different value for y in the limit. All this 
indicates that (76) and (86)-(88) are valid provided that kalcosp is small, and 
that there is a rapid transition in the range in-p = O(ka) to the solution (89). 
A perturbation procedure is now developed for this transition range. 

F = ekZ,  &/gk = 1 + k2a2, (89) 

7. The limit p+tn 
When 4n-P = O(ka),  cosp = O(ka) and we have 

The first two of these are interpreted as 

Fv = O(k2aF), 

F = ekzU, where V, = O(k3a2U). 

A change of variables that accommodates these orders of magnitude is 
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When these are introduced into (37)-(39), and the limit ka+O taken in the 
resulting equations, the reduced boundary-value probIem is 

(93) 

uz-pu = - u3, z = 0,  (94) 

u,+au = 0, Y = - a z .  (95) 

u,, +2u, = 0, - Y < az < 0, 

On 2 = 0, U, can be eliminated from (94) using (93) and we have the eigenvalue 
problem 

u1r+2yu= 2u3, o < Y < 00, (96) 

uI+au = 0, Y = 0, (97) 

u bounded, Y = co, (98) 

for y and u( Y) = U (  Y, 0) .  It. is remarkable that the surface conditions are de- 
coupled in this way. The amplitude a can be defined such that P = 1 at the origin, 
then the boundary condition at Y = 0 may be taken as 

u =  1, u’= -a, Y = 0. (99) 

Equation (96) integrates to 

u12 + 2yu2 = 214 f c. 
There are now two cases depending on whether or not u -+ 0 as Y + 00. 

Case I: u+ 0, Y +co. In  this case C = 0 and y must be negative. The boundary 
conditions (99) then determine p to be 

,a = -a(&?- 1) for a > 1. 
The solution is 

. (102) 
(a2- l)* c =  - 2c 

U =  
(1+c)exp[Y(a2- 1)+]-(1-c)exp[- y(a2-1)*]’ a 

When a 1, 

In  the original variables this is the range cos p > ka, and (101) and (103) give 

u N exp[- Y(a2- 1)*]+0{01-2exp[-3Y(a2- I)+]}. (103) 

W 2 / g k  N 1 - 4 cosz/3 + &k2a2, 

P(y, 0) N e-kdg + O(k2a2 ~ o s - ~ p e - ~ ~ a v ) ,  

where A = (a2- l ) + k a  N cosp-~k2a21cosp. 

These agree with (86) and (87) when cosp < 1. (Note that sin@ N 1 -*cos2p.)  
Therefore this perturbation solution merges correctly with the previous solution 
in the range ka 4 cos p < 1. 

Case I applies when a > 1, i.e. cosp > ka, but ceases to give a bounded solu- 
tion otherwise. This means that the solution no longer tends to zero as Y+m, 
when a < 1, i.e. cosp < ka. We then have the following. 

CaseII: u+b > 0, Y+co. In  this case 

u’2 = c - 2yu2 + u4, 
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and u = b must be a double zero of the right-hand side. Hence p = b2 and 
C = b4. The boundary conditions (99) then require 

b2= I - a ,  

p =  l-a,  a < 1. 

The solution is 
( 1  + b)  - (1  - b)e-2bY 

u = b {  (1 + b )  + (1 - b )  e-2bP 

Therefore, in this range, 0 < cosp < ka, 

d l g k  = 1 + (ka - cos 8) ka, 

and F decreases from I at y = 0 to 

b = (1-cosplka)a as y+m. 

When cosp = 0, we have the deep-water result (89), and everything checks. 

is now a linear problem. If new variables 
With U (  Y ,  0) determined, the solution of (93) and (95) for the 2 dependence 

Y + a Z = q ,  z=-6  
are introduced the problem becomes 

Z4,,+2aZ4=q, q > O ,  S > O ,  

u = u ( y ) ,  [ =  0. 

U,,+aU = 0, 7 = 0, 

The solution can be obtained via Laplace transforms in 6. The detaiIs will not 
be given, since the interesting results concerning the behaviour a t  the surface 
have alrea.dy been found. 

8. The dispersion relation and modulation theory 

wave trains (see Whitham 1974, chaps 14 and 15). For a wave train with 
The dispersion relation controls the behaviour and stability of modulated 

w = W , ( k ) + W 2 ( k ) a 2 +  ... 
the criterion for instability in the sense that small modulations will grow is 
wlw2  < 0.  Here, in all cases (including Stokes’s deep-water solution (89)), 
W: < 0 and w2 > 0, so we have the unstable situation. The inference from 
similar problems is , that  this kind of instability does not lead to chaotic 
motion, but rather to a tendency for concentrated groups to form. The local 
behaviour inside a group is given by the periodic solution but the amplitude and 
frequency are modulated into the form typical of solitary waves. In  simpler 
problems (Whitham 1974, $9  15.5, 17.8; Ostrowskii 1967, 1968) such ‘solitary 
envelopes’ can be described in detail. The detailed description here would be 
formidable. 
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Nonlinear effects in edge waves 367 

Appendix 
The boundary conditions on the free surface x = 6 are 

5t++&+9,6 = $2, 

9t + 8(v9)2 + g6 = 0- 

These may be transferred to z = 0 using Taylor expansions in 6. To third order 
they become 

t;t-9,+V,b+#,5~-#Zz6}+ r 9 ~ z 6 5 ~ + # , z 5 5 ~ - 9 # ~ ~ z ~ 2 1  = 0, (A 1) 

#t+95+{8(V9)2+9tz15)+r9(V9)~6+B~tzz1621 = 0. (A 2) 

The second one can be solved for 6 and used in the first to find a boundary 
condition for # alone. By hindsight a grouping of the terms can be found that 
makes the h a 1  algebra simple. The guide is to use (Vq5)2 and #z + g-l& as much 
as possible; the latter is the linearized boundary condition. Then it is found that 

The Fourier series for # is 
9 = ago-l sin p{F sin 8 + kaF2 sin 28 + k2a2F3 sin 38 + . . .}, (A 4) 

where 8 = kx-a t .  In  principle, terms quadratic in P on the right of (A 3) 
generate F,; cubic terms then generate F3 as well as contributing to the first 
harmonic. However, the first-order results 

F, = -kcosPF, & = ksinpF, w2 = gksinp (A 5) 

(Vq5)z = g2a2w2sin2/9k2F2, q5z+g-1#tt = 0. (A 6) 

may be used on the right of (A 3), and with these approximations 

We see that, the quadratic terms vanish, and find that the cubic terms contributing 
to the cos 319 term cancel; hence we may take I?, = P3 = 0. Then (A 3) reduces 
to the boundary condition 

(A 7) F, - ( a2 /g )  P = - k3a2 sin p F3. 

The expression for 6 from (A 2) may be written as 

From (A 4), with the approximations (A 5) and (A 6) used in the quadratic and 
cubic terms, we have 

6 = a s i n ~ { F c o s ~ - ~ k a c o s 2 j 3 F 2 + ~ k 2 a 2 s i n 2 ~ F 2 c o s  28 

+ k2a2(#sin4/3-gsin2/3) F ~ ~ 0 ~ 8 + ~ k ~ a ~ s i n ~ / 3 F ~ c o s  38). (A 9) 
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